تجزیه و تحلیل شبکه های عصبی مصنوعی ژئومورفولوژیکی در برآورد رواناب مستقیم (حوضة جاجرود، زیرحوضة امامه)

Authors

علی نصیری

مجتبی یمانی

abstract

برآورد و تعیین رواناب مستقیم رودخانه ها در عمل کار پیچیده ای است و تاکنون روش های متفاوتی برای محاسبه آن پیشنهاد شده است. یکی از روش های جدید در حل مسائل مهندسی آب و رودخانه ها و همچنین برآورد دبی رودها، استفاده از روش شبکه عصبی مصنوعی است که با الگوبرداری از شبکه عصبی مغز انسان، ضمن اجرای فرایند آموزش، روابط درونی بین داده ها را کشف می کند و آن را به موقعیت های دیگر تعمیم می دهد. هدف عمدة پژوهش حاضر نیز برآورد رواناب از طریق تجزیه و تحلیل روابط بارش ـ رواناب براساس داده های کمّی ژئومورفولوژی و با استفاده از تکنیک شبکه های عصبی مصنوعی ژئومورفولوژیکی (gann) در حوضه امامه (از زیرحوضه های جاجرود) است. در مطالعة حاضر بر مبنای ساختمان ژئومورفولوژی شبکه هیدرولوژی حوضه مورد نظر، یک سامانة شبکه عصبی ژئومورفولوژیکی سه لایه با تعدادی نودهای میانی برابر تعداد مسیرها یا وضعیت های ژئومورفولوژیکی شبکه هیدرولوژی حوضه به منظور برآورد رواناب مستقیم ایجاد گردید. وزن های مربوط به اتصالات درون شبکه ای ساختمان آن مدل با استفاده از متغیرهای ژئومورفولوژی تعیین شد. نتایج به دست آمده از مدل شبکه ای مذکور با اطلاعات حاصل از مشاهدات مستقیم به منظور نشان دادن کارایی آن مقایسه شد. ارزیابی نتایج، حاکی از عملکرد بسیار خوب (97/0=2r) مدل شبکه ژئومورفولوژیکی در تعیین پاسخ های هیدرولوژیکی حوضة مورد مطالعه است. بدین وسیله، برتری مدل مذکور بر روش های رایج و معمول نشان داده می شود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تجزیه و تحلیل شبکه‌های عصبی مصنوعی ژئومورفولوژیکی در برآورد رواناب مستقیم (حوضة جاجرود، زیرحوضة امامه)

برآورد و تعیین رواناب مستقیم رودخانه‌ها در عمل کار پیچیده‌ای است و تاکنون روش‌های متفاوتی برای محاسبه آن پیشنهاد شده است. یکی از روش‌های جدید در حل مسائل مهندسی آب و رودخانه‌ها و همچنین برآورد دبی رودها، استفاده از روش شبکه عصبی مصنوعی است که با الگوبرداری از شبکه عصبی مغز انسان، ضمن اجرای فرایند آموزش، روابط درونی بین داده‌ها را کشف می‌کند و آن را به موقعیت‌های دیگر تعمیم می‌دهد. هدف عمدة پژوه...

full text

برآورد رواناب حوضه بار اریه با استفاده از مدل‌های WetSpa و شبکه عصبی مصنوعی

برآورد صحیح رواناب حوضه نقش بسیار مهمی در مدیریت آن دارد. تا به حال محققین زیادی از مدل‌های یکپارچه، توزیعی و هم‌چنین از روش‌های هوشمند مصنوعی به‌منظور برآورد رواناب حوضه استفاده نمودند. در تحقیق حاضر برای برآورد آبدهی حوضه بار اریه با مساحتی معادل با 112 کیلومتر مربع و متوسط بارش سالانه 72/306 میلی‌متر از دو مدل توزیعی WetSpa و مدل هوشمند شبکه عصبی مصنوعی ANN استفاده گردید. به‌منظور اجرای مدل ...

full text

عملکرد شبکه عصبی مصنوعی و شبکه عصبی فازی- تطبیقی در برآورد غلظت ازن در شهر تهران

در سال‌های اخیر آلودگی هوا به عنوان یکی از بزرگ ترین مشکلات زیست محیطی در سطح جهانی مطرح شده است. ازن تروپوسفری یک آلاینده ثانویه است و سبب بروز مشکلات تنفسی و تاثیر حاد بر گیاهان می‌شود. در این مطالعه به دلیل غیر خطی بودن و پیچیدگی این پدیده‌هابه مقایسه برآورد غلظت آلاینده ازن با استفاده از شبکه عصبی مصنوعی و شبکه عصبی فازی-تطبیقی پرداخته شد. در پژوهش حاضر از متغیرهای هواشناسی در ...

full text

مقایسه شبکه عصبی مصنوعی و مدل HEC – HMS در برآورد بارش – رواناب در حوضه آبریز رودخانه اعظم هرات

یکی از روشهایی که در زمینه های مختلف علمی استفاده شده و می تواند فرایند پیچیده بارش – رواناب را شبیه سازی کند، استفاده از مدلهای شبکه عصبی مصنوعی است. هدف این تحقیق بررسی کارآمدی شبکه های عصبی مصنوعی در شبیه سازی فرایند بارش- رواناب و مقایسه نتایج آنها با مدل HEC – HMS در حوضه آبریز رودخانه اعظم هرات در استان یزد است. داده های مورد استفاده در این تحقیق شامل بارندگی روزانه به همراه دبی روزانه و ...

full text

مقایسه بین شبکه عصبی مصنوعی و تحلیل رگرسیون در برآورد مدت زمان قطع درخت

قطع درخت در بین مؤلفه‌های بهره‌برداری، اهمیت زیادی دارد. برآورد تولید تجهیزات جنگلی، بخش مهمی از مدیریت هزینه‌ها در یک واحد جنگلداری است که با کاهش هزینه‌های عملیات همراه است. به عبارت دیگر، هزینه‌های بالای سرمایه‌گذاری در بهره‌برداری جنگل، دلیل خوبی برای تحقیقات مهندسی جنگل و همچنین مدل‌سازی زمان می‌باشد. روشهای زیادی مانند انواع رگرسیون‌ها، منطق فازی، شبکه‌های عصبی و غیره برای پیش‌بینی زمان ق...

full text

My Resources

Save resource for easier access later


Journal title:
پژوهشهای جغرافیای طبیعی

Publisher: مؤسسه جغرافیا

ISSN 2008-630X

volume 41

issue 68 2010

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023